
MATHEMATICS OF COMPUTATION, VOLUME 25, NUMBER 115, JULY, 1971 

A Stable, Rational QR Algorithm for the Computation 
of the Eigenvalues of an Hermitian, Tridiagonal Matrix 

By Christian H. Reinsch 

Abstract. The most efficient program for finding all the eigenvalues of a symmetric 
matrix is a combination of the Householder tridiagonalization and the QR algorithm. 
The latter, if carried out in a natural way, requires 4n additions, iOn multiplications, 2n 
divisions, and n square roots per iteration (n the order of the matrix). In 1963, Ortega and 
Kaiser showed that the process can be carried out using no square roots (and saving 7n 
multiplications). However, their algorithm is unstable and several modifications were 
suggested to increase its accuracy. We, too, want to give such a modification together 
with some examples demonstrating the achieved accuracy. 

1. Introduction. In 1961 Francis [4] proposed the QR transformation, an 
offspring of Rutishauser's LR transformation [8], for the computation of the eigen- 
values of a general matrix. He considered his method to be inefficient for Hermitian 
matrices but, fortunately, it soon turned out that, contrary to his original opinion, 
the method is especially efficient for this class of matrices, provided the given matrix 
is first reduced by Householder's method to real tridiagonal form and provided that 
shifts are used to accelerate the rate of convergence. (A description of this technique 
can be found in [10], for tested ALGOL programs see [6], [3], [2], the properties of 
the now generally adopted shift are described in [11].) 

Ortega and Kaiser [7] pointed out that by avoiding square roots the efficiency of 
this algorithm can be further increased (though if all eigenvalues are to be computed, 
it is already superior to all other known methods). The algorithm which they proposed, 
however, was unstable and several modifications were suggested (e.g., [9], [5] and 
others, not published). We, too, want to give such a modification here, together with 
some examples demonstrating the achieved accuracy. 

2. The Algorithm. Let A be the shifted matrix with diagonal entries a,, a,, 
and subdiagonal entries b1, . , b,,-,. As is well known, a QR step consists of the 
orthogonal-triangular decomposition, A = QR, and the recombination in reversed 
order, X = RQ. For tridiagonal matrices, the decomposition is usually done by the 
application of n - 1 plane rotations P', . . , lP, from the left to A to produce the 
upper triangular matrix R with diagonal r1, * * *, r,, first superdiagonal q1, ** *, 

Received November 13, 1970, revised February 1, 1971. 
AMS 1970 subject classifications. Primary 65F15. 
Key words and phrases. Hermitian matrix, symmetric matrix, tridiagonal matrix, all eigenvalues, 

QR transformation. 

Copyright (0 1971, American Mathematical Society 

591 



592 CHRISTIAN H. REINSCH 

and second superdiagonal t1, * , t.-2. If 

00 ] ~~~~~~~~~~ri-l qj-, t i_, 

PiT= c, Si , P1 * * P A pi bjci1, 

-Si Ci bi aj+j bj+1 

then it follows by induction that 

( 1) P= al, c. = 1; 

ri = (pj + bM)"/, 

Ci = p1/ri, 

(2) s5 = b,/ri, n= 1, , n 1; 

qj = cici-1bi + sia,+1, 

pi+, = cjaj+1 -sicilbi, 

(3) r.= p. 

For the recombination, we have in the tridiagonal case A = RP1 ... P-,, giving 

a= rici-Ic; + qjsi, 

(4) = pici.1 + qis,, I = 1, *, n- 1; 

bij rj+jsj, 

(5) an = rnCn-1 

Thus, 4n additions, 10n multiplications, 2n divisions, and n square roots are 
necessary per iteration. This algorithm is realized in the programs of [2]. To avoid 
square roots, Ortega and Kaiser introduced the quantities 

(6) hi = pici-I 

(which they call ey) and computed p2 from hM/(l _ S2_) which is obviously inaccurate 
if sL is near to unity. We prefer to compute a quantity g, defined by 

(7) g, = pilci-I 

and to compute hi from it. From the last equation of (2) and from cib, = sip, one 
obtains the recurrence relation 

gi+1 
= 

a,+j 
- 

sici..bl/c, 
= 

a,+j 
- 

sics.I4/sipi 
= aj+ -b21gi, 

while according to Ortega and Kaiser, the second equation of (4) can be transformed 
into 

a = hi + cici-lbis; + siai+1si = hi + (/(hj + a,+1). 
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Thus, the algorithm without square roots becomes 

g =h=al, sg= O; 
2 

pi =gihi 
2 2 

ri= p + b, 
I -rS2 ( #1 

(8) Si = bM/r j 1, , n- 1; 

a= hi + s2(hi + a+ 1), 

gj+1 ai+l b 2Igi, 

hi+, gi+ljpsIr2,, 

an = h, - ghnSnS- 1. 

Note that the squares of the subdiagonal elements rather than the elements 
themselves are the given data. This algorithm needs 4n additions, 4n multiplications, 
and 3n divisions (n additions less than Ortega and Kaiser but n multiplications and n 
divisions more). The iteration is repeated until the last off-diagonal entry becomes 
smaller than a given tolerance A. 

It should be mentioned that the gi are the well-known quotients of consecutive 
principal minors of the shifted matrix A, which are also used in the bisection process 
[1]. This can be used to advantage to assign ordinals to computed eigenvalues. As is 
the case there, a vanishing g, has to be replaced by a small nonzero value a equivalent 
to a perturbation of the diagonal entry a;. a has to be chosen smaller than 2A in order 
to avoid indefinite cycling: if gn is replaced by a then b2_1 = a2s.2c_12_ 62/4 < A2, 
and the iteration terminates. In any case, the computed values of g, (j = 1** , n) 
are always the exact values corresponding to slightly modified entries of the matrix A. 
Rounding errors in the evaluation of the remaining expressions are obviously harm- 
less. For technical reasons, a decomposition starting with the lower end of the 
tridiagonal matrix is preferable (called the "QL algorithm"). This is merely achieved 
by the replacement 

dn, ***dl foral* an, 

2 2 22 
en,* ,el for bl, * *, , 

(and similarly for the entries of A). Introducing the fake quantity e2 we obtain the, 
procedure (without shift): 

g: =h:= d; S2 : ; 

:= n - 1(-1)1 
2 2 2 2 

p g= X h; r P e,; 

(9) =e2 S2 X r2; s2 = Ir; 

-h + S2 X (h + di); 

g = - ei/g; h = g X p2 /r; 

a,:-zh; el =gX hXs2. 
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The computation of the shift, the tests for splitting and convergence can be done as in 
the usual QR algorithm (see [2]). 

3. Test Examples. The algorithm (9) was embedded in the organizational 
scheme of procedure TQL1 [2]. The following numerical results were obtained on the 
AEG-TELEFUNKEN computer TR-4 of the Leibnitz-Rechenzentrum der Bayer- 
ischen Akademie der Wissenschaften, MUnchen, with machine precision 2-35 - 

2.91jo-^ Two consecutive machine numbers in the interval [1, 16) have a distance 
2 - 5.82k,-.., and this would be the appropriate unit to measure most of the 
errors X,- Xi listed below. Rounded decimal equivalents are listed in sequence as 
they were computed. 

First Example. 
order: 5, 
diagonal: (0, 0, 0, 0. O), 
subdiagonal: (1,1,1, 1). 

This example served as a test for formal correctness. In the first iteration g, and 
go become zero for the chosen shift and have to be replaced by a small tolerance 
quantity. 

Computed eigenvalues X. - Iterations 

-0.999999 999996 0.41 1 
1.000000 0000 0 1 

- 5. 14wo. -0.5 X 1011 4 
1.732050 8077 11.2j 1 

- 1.732050 8075 6.33 0 

7 

Second Example. Wilkinson's matrix W27, 

order: 21, 
diagonal: (10, 9, -., -9, -10), 
subdiagonal: (1,- , 1). 
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This example was chosen since the exact eigenvalues were known to 24 decimal 
places. 

Computed eigenvalues Xi X.- i Iterations 

10.74619 4183 -0.8 3 
9.21067 86472 -11.9 2 
8.03894 11193 -3.3 2 
7.00395 20027 1.1 2 
6.00022 56802 5.5 2 
5.00000 81589 17.9 2 
4.00000 02049 - 12.1 2 
3.00000 00037 -8.3 2 
2.00000 00001 0.4 2 
0.99999 999999 -1.2 2 
4.0141o,- 4.0 X lto 2 

-1.00000 00005 -46.5 1 
-2.00000 00001 -6.2 2 
-3.00000 00040 -15.0 1 

-4.00000 02057 -6.3 2 
-5.00000 81591 -4.1 1 
-6.00022 56806 -4.6 2 
-7.00395 20030 -3.6 X 10 10 1 
-8.03894 11197 -4.3 1 
-9.21067 86491 -17.4 1 

-10.74619 4185 -20.9i 0 

35 

Third Example. Wilkinson's matrix W2, 

order: 21, 
diagonal: (10, 9, * *, 0, ... , 9, 10), 
subdiagonal: (1, ... , 1). 

Here, too, were the eigenvalues known to 24 decimals. The matrix has a number 
of close pairs of eigenvalues, and earlier algorithms for the rational QR transformation 
gave only poor results. 



596 CHRISTIAN H. REINSCH 

Computed eigenvalues 4 X- Iterations 

10.74619 4183 -0.8 3 
10.74619 4183 5.0 2 
9.21067 86473 -3.3 2 
9.21067 86473 -8.9 1 
8.03894 11157 -9.1 3 
8.03894 11228 -6.3 0 
7.00395 17986 -1.6 3 
7.00395 22095 -4.0 0 
6.00021 75223 -0.5 3 
6.00023 40316 0.0 0 
5.00024 44249 -9.1 X 10" 3 
4.99978 24777 -6.3 1 
4.00435 40235 10.8 3 
3.99604 82015 13.2 1 
3.04309 92925 -8.3 3 
2.96105 88842 -2.5 1 
2.13020 92192 - 18.6 2 
1.78932 13524 -31.7 1 
0.94753 436752 -0.7 2 
0.25380 581678 -31.9 1 

-1.12544 15223 -21.8 0 

35 

Fourth Example. 

order: 21, 
diagonal: (0, 0, 0, 0, 5, 5, , 5, 5, 0, 0, 0, 0), 
subdiagonal: (1, *., 1). 

This matrix has also several close pairs of eigenvalues. The same method in 
double precision was used to compute them in sufficient accuracy to permit a reliable 
computation of $4 - Xi. 
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Computed eigenvalues X i- Xi Iterations 

-0.68610 208438 - 1.0 6 
-0.68610 208455 -1.2 0 
- 1.64133 43818 -2.1 2 
-1.64133 43820 -18.7 1 

0.53719 550200 -18.6 3 
0.53719 549767 -18.7 0 
1.58048 33100 -2.3 3 
1.58048 33817 -1.9 0 
3.05424 18341 4.9 4 
3.21306 77750 6.3 2 
3.46568 21635 2.7 X 10-11 2 
3.79631 79956 5.0 2 
4.18602 04350 9.1 2 
4.61395 05337 -4.2 2 
5.05837 84312 -5.1 2 
5.49755 03169 -4.0 2 
5.91051 27679 14.1 2 
6.27790 84969 22.7 2 
6.58272 45938 10.9 2 
6.81096 24646 10.3 1 
6.95219 74335 9.0 0 

40 
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